openinference

OpenInference Google ADK Instrumentation

pypi

Python auto-instrumentation library for Google ADK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-google-adk

Quickstart

In this example we will instrument a small program that uses Gemini and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-google-adk arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

phoenix serve

In a python file, set up the GoogleADKInstrumentor and configure the tracer to send traces to Phoenix.

import asyncio

from google.adk.agents import Agent
from google.adk.runners import InMemoryRunner
from google.genai import types

from openinference.instrumentation.google_adk import GoogleADKInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

GoogleADKInstrumentor().instrument(tracer_provider=tracer_provider)

def get_weather(city: str) -> dict:
    """Retrieves the current weather report for a specified city.

    Args:
        city (str): The name of the city for which to retrieve the weather report.

    Returns:
        dict: status and result or error msg.
    """
    if city.lower() == "new york":
        return {
            "status": "success",
            "report": (
                "The weather in New York is sunny with a temperature of 25 degrees"
                " Celsius (77 degrees Fahrenheit)."
            ),
        }
    else:
        return {
            "status": "error",
            "error_message": f"Weather information for '{city}' is not available.",
        }

agent = Agent(
   name="test_agent",
   model="gemini-2.0-flash-exp",
   description="Agent to answer questions using tools.",
   instruction="You must use the available tools to find an answer.",
   tools=[get_weather]
)

async def main():
    app_name = "test_instrumentation"
    user_id = "test_user"
    session_id = "test_session"
    runner = InMemoryRunner(agent=agent, app_name=app_name)
    session_service = runner.session_service
    await session_service.create_session(
        app_name=app_name,
        user_id=user_id,
        session_id=session_id
    )
    async for event in runner.run_async(
        user_id=user_id,
        session_id=session_id,
        new_message=types.Content(role="user", parts=[
            types.Part(text="What is the weather in New York?")]
        )
    ):
        if event.is_final_response():
            print(event.content.parts[0].text.strip())

if __name__ == "__main__":
    asyncio.run(main())

Since we are using Gemini, we must set the GOOGLE_API_KEY environment variable to authenticate with the Gemini API.

export GOOGLE_API_KEY=your-api-key

Now simply run the python file and observe the traces in Phoenix.

python your_file.py